Прямолинейное равноускоренное движение графики на примере

Равноускоренное движение: формулы, примеры

Равноускоренное движение — это движение с ускорением, вектор которого не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту.

Рассмотрим последний случай более подробно. В любой точке траектории на камень действует ускорение свободного падения , которое не меняется по величине и всегда направлено в одну сторону. 

Обратите внимание

Движение тела, брошенного под углом к горизонту, можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y — равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Формулы для равноускоренного движения

Формула для скорости при равноускоренном движении:

.

Здесь  — начальная скорость тела,  — ускорение.

Покажем на графике, что при равноускоренном движении зависимость  имеет вид прямой линии.

Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.

Чем больше угол , тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.

Для первого графика: .

Для второго графика: .

По данному графику можно также вычислить перемещение тела за время . Как это сделать?

Выделим на графике малый отрезок времени . Будем считать, что он настолько мал, что движение за время  можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка . Тогда, перемещение  за время  будет равно .

Разобьем все время  на бесконечно малые промежутки . Перемещение  за время  равно площади трапеции .

.

Мы знаем, что , поэтому окончательная формула для перемещения тела примет вид:

Для того, чтобы найти координату нахождения тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты при равноускоренном движении выражает закон равноускоренного движения.

Закон равноускоренного движения

Закон равноускоренного движения

Еще одна распространенная задача, которая возникает при анализе равноускоренного движения — нахождение перемещения при заданных значениях начальной и конечной скоростей и ускорения.

Исключая из записанных выше уравнений  и решая их, получаем:

.

По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:

.

При   и 

Важно!

Величины , входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/fizika/kinematika/ravnouskorennoe-dvizhenie/

Прямолинейное равноускоренное движение

Поставим опыт Изучим, как скатывается шарик с наклонной плоскости. На рисунке 5.1 показаны последовательные положения шарика через равные промежутки времени.

Видно, что шарик движется неравномерно: пути, проходимые им за последовательные равные промежутки времени, увеличиваются. Следовательно, скорость шарика увеличивается.

Движение шарика, скатывающегося с наклонной плоскости, является примером прямолинейного равноускоренного движения. Такое движение вы уже изучали в курсе физики основной школы. Напомним его определение.

Прямолинейным равноускоренным движением называют прямолинейное движение, при котором скорость тела за любые равные промежутки времени изменяется на одну и ту же величину.

Важно

Прямолинейно равноускоренно может двигаться, например, автомобиль во время разгона (рис. 5.2, а). Однако непривычным может показаться то, что при торможении (рис. 5.2, б) автомобиль тоже может двигаться прямолинейно равноускоренно! Ведь в определении прямолинейного равноускоренного движения речь идет не об увеличении скорости, а только об ее изменении.

Дело в том, что понятие ускорения в физике шире, чем в разговорном языке. В обыденной речи под ускорением понимают обычно только увеличение скорости. Мы же будем говорить, что тело движется с ускорением всегда, когда скорость тела изменяется со временем любым образом (увеличивается или уменьшается по модулю, изменяется по направлению и т. п.).

Может возникнуть вопрос: почему мы уделяем внимание именно прямолинейному равноускоренному движению? Забегая немного вперед, выдадим «секрет»: именно с таким движением мы будем очень часто иметь дело при изучении механики.

Напомним (об этом уже говорилось в курсе физики основной школы), что под действием постоянной силы тело движется прямолинейно равноускоренно. (Если начальная скорость тела равна нулю или направлена вдоль линии действия силы.) А во многих задачах по механике рассматривается именно такая ситуация. Ниже мы рассмотрим подробно ее различные варианты.

2. Ускорение

В определении прямолинейного равноускоренного движения речь идет об изменении скорости. Как определяют изменение скорости?

Обозначим0 скорость тела в начальный момент времени, а– скорость тела через промежуток времени t. Тогда изменение скорости за этот промежуток времени

Эту формулу можно переписать также в виде

На рисунке 5.3 показано, как найти вектор изменения скорости Δв случае прямолинейного неравномерного движения.

? 1. Какому из рисунков 5.3 (а или б) соответствует увеличение скорости, а какому – уменьшение?

Введем теперь понятие ускорения.

Ускорениемназывают отношение изменения скорости Δк промежутку времени Δt, за который произошло это изменение:

(Здесь в общем случае надо говорить о мгновенном ускорении, которое определяется с помощью достаточно малых промежутков времени – подобно тому, как мы определяли выше мгновенную скорость. При прямолинейном равноускоренном движении мгновенное ускорение постоянно.)

Как следует из этого определения, ускорение – векторная величина. Она характеризует скорость изменения скорости. Единицей ускорения в СИ является 1 м/с2 (читают: «метр в секунду за секунду» или «метр делить на секунду в квадрате»). Если тело движется с таким по модулю ускорением в одном направлении, то его скорость каждую секунду увеличивается (или уменьшается!) на 1 м/с.

Когда тело падает, оно движется с ускорением, равным примерно 10 м/с2 (если можно пренебречь сопротивлением воздуха).

Рассмотрим теперь, при каком условии скорость тела увеличивается, а при каком – уменьшается. Из определения (3) следует, что

На рисунке 5.4 мы заменили (по сравнению с рисунком 5.3) Δна равное ему выражениеΔt.

Совет

Мы видим теперь, что скорость тела увеличивается, если ускорение направлено так же, как начальная скорость (рис. 5.4, а). Если же ускорение направлено противоположно скорости (рис. 5.4, б), то скорость тела уменьшается.

? 2. На каком из рисунков 5.2 (а или б) ускорение автомобиля направлено влево?

Выберем начальный момент времени t0 = 0, тогда Δt = t – t0 = t – 0 = t. Поскольку Δ=–0, из формулы (4) получаем

Направим ось x вдоль траектории движения тела. Тогда

vx = v0x + axt.      (6)

Здесь vx – проекция скорости в момент времени t, v0x – проекция начальной скорости, ax – проекция ускорения.

В формуле (6) проекция начальной скорости v0x и проекция ускорения ax могут быть положительными и отрицательными. В зависимости от соотношения знаков v0x и ax модуль скорости тела будет увеличиваться или уменьшаться со временем.

Рассмотрим примеры.

? 3. Четыре автомобиля движутся вдоль оси x. В течение некоторого времени зависимость vx(t) выражается для них (в единицах СИ) формулами:
1) vx = 8 + 2t; 2) vx = 20 – 4t; 3) vx = –10 + t; 4) vx = –15 – 3t. а) Чему равны проекции начальной скорости и ускорения каждого автомобиля? б) Какие автомобили разгоняются, а какие – тормозят?

в) Скорость какого автомобиля наибольшая по модулю в момент времени t = 2 с? наименьшая?

Выполнив это задание, вы заметите, что скорость тела увеличивается по модулю, если проекция начальной скорости и проекция ускорения имеют одинаковые знаки (обе положительные или обе отрицательные).

Если же проекции начальной скорости и ускорения имеют разные знаки, то скорость тела сначала уменьшается по модулю. В некоторый момент скорость тела станет равной нулю, после чего (если ускорение останется прежним) направление скорости изменится на противоположное и модуль скорости тела начнет увеличиваться. Далее мы рассмотрим это на примере тела, брошенного вертикально вверх.

3. График зависимости скорости от времени

Из формулы (6) следует, что при прямолинейном равноускоренном движении проекция скорости vx линейно зависит от времени t. Поэтому график зависимости vx(t) – отрезок прямой.

На рисунке 5.5 изображены графики зависимости проекции скорости от времени для синего и красного автомобилей, движущихся вдоль оси x. а) Какой из автомобилей тормозит? Чему равен модуль его ускорения? б) У какого автомобиля модуль ускорения меньше? Чему он равен? в) Запишите зависимость vx(t) для каждого автомобиля.

г) Используя эту запись, найдите момент времени, когда скорости автомобилей станут равными. Проверьте полученный ответ по приведенным графикам.

? 5. На рисунке 5.6 изображены графики зависимости проекции скорости от времени для тел, движущихся вдоль оси x.

Обратите внимание

а) Какие графики описывают движение тела, скорость которого все время увеличивается по модулю? б) На каких графиках v0x и ax имеют разные знаки? в) Какие графики описывают случаи, когда направление скорости тела изменяется на противоположное?

г) Начертите для всех изображенных случаев графики зависимости модуля скорости от времени.

? 6. Зависимость проекции скорости от времени для первого тела выражается в единицах СИ формулой v12 = 6 – Зt, а для второго – формулой v2x = 2 + t. а) Изобразите графики vx(t) для каждого тела. б) В какой момент скорости тел равны (по модулю и по направлению)?

в) В какие моменты скорости тел равны по модулю?

Дополнительные вопросы и задания

7. От платформы отправляется поезд на восток. В это же время у соседней платформы тормозит поезд, идущий на запад. Сделайте схематический рисунок, на котором покажите направления скорости и ускорения каждого поезда.

8. Как направлено ускорение лифта, когда он: а) начинает двигаться с первого этажа? б) тормозит на верхнем этаже? в) тормозит на третьем этаже, двигаясь вниз? г) начинает движение на третьем этаже, двигаясь вверх?

Движение лифта при разгоне и торможении считайте равноускоренным.

9. Автомобиль трогается с места в направлении на север и набирает скорость 72 км/ч за 40 с. Движение автомобиля считайте прямолинейным равноускоренным. а) Как направлено ускорение автомобиля? б) Чему равно ускорение автомобиля по модулю? в) Начертите график зависимости проекции скорости автомобиля от времени.

г) Какой была скорость автомобиля через 10 с после начала движения?

Источник: http://phscs.ru/physics10/acceleration

Скорость прямолинейного равноускоренного движения. График скорости. Видеоурок. Физика 9 Класс

Вспомним, что такое ускорение. 

Определение

Ускорение – это физическая величина, которая характеризует изменение скорости за определенный промежуток времени:

То есть ускорение – это величина, которая определяется изменением скорости за время, в течение которого это изменение произошло.

Еще раз о том, что такое равноускоренное движение

Рассмотрим задачу.

Автомобиль за каждую секунду увеличивает свою скорость на. Движется ли автомобиль равноускоренно?

На первый взгляд, кажется, да, ведь за равные промежутки времени скорость увеличивается на равные величины. Давайте рассмотрим подробнее движение на протяжении 1 с.

Возможен такой случай, что первые 0,5 с автомобиль двигался равномерно и увеличил свою скорость на за вторые 0,5 с.

Могла быть и другая ситуация: автомобиль разгонялся на да первые, а оставщиеся двигался равномерно. Такое движение не будет равноускоренным.

По аналогии с равномерным движение введем корректную формулировку равноускоренного движения.

Равноускоренным называется такое движение, при котором тело за ЛЮБЫЕ равные промежутки времени меняет свою скорость на одинаковую величину.

Часто равноускоренным называют такое движение, при котором тело двигается с постоянным ускорением. Самым простым примером равноускоренного движения является свободное падение тела (тело падает под действием силы тяжести).

Важно

Воспользовавшись уравнением, определяющим ускорение, удобно записать формулу для вычисления мгновенной скорости любого промежутка и для любого момента времени:

Уравнение скорости в проекциях имеет вид:

Читайте также:  Многозначность слова: примеры и употребление в русском языке

Это уравнение дает возможность определить скорость в любой момент движения тела. При работе с законом изменения скорости от времени необходимо учитывать направление скорости по отношению к выбранной СО.

К вопросу о направлении скорости и ускорения

В равномерном движении направление скорости и перемещения всегда совпадают. В случае равноускоренного движения направление скорости не всегда совпадает с направлением ускорения и не всегда направление ускорения указывает направление движения тела.

Рассмотрим наиболее типичные примеры направления скорости и ускорения.

1. Скорость и ускорение направлены в одну сторону вдоль одной прямой (рис. 1).

Рис. 1. Скорость и ускорение направлены в одну сторону вдоль одной прямой

В данном случае тело разгоняется. Примерами такого движения могут быть свободное падение, начало движения и разгон автобуса, старт и разгон ракеты.

2. Скорость и ускорение направлены в разные стороны вдоль одной прямой (рис. 2).

Рис. 2. Скорость и ускорение направлены в разные стороны вдоль одной прямой

Такое движение иногда называют равнозамедленным. В таком случае говорят, что тело тормозит. В конечном итоге оно либо остановится, либо начнет двигаться в противоположном направлении. Пример такого движения – камень, подброшенный вертикально вверх.  

3. Скорость и ускорение взаимно перпендикулярны (рис. 3).

Рис. 3. Скорость и ускорение взаимно перпендикулярны

Примерами такого движения является движение Земли вокруг Солнца и движение Луны вокруг Земли. В этом случаи траекторией движения будет окружность.

Таким образом, направление ускорения не всегда совпадает с направлением скорости, но всегда совпадает с направлением изменения скорости.

График скорости (проекции скорости) представляет собой закон изменения скорости (проекции скорости) от времени для равноускоренного прямолинейного движения, представленный графически.

Рис. 4. Графики зависимости проекции скорости от времени для равноускоренного прямолинейного движения

Проанализируем различные графики.

Совет

Первый. Уравнение проекции скорости: . С увеличением времени скорость также увеличивается. Обратите внимание, что на графике, где одна из осей – время, а другая – скорость, будет прямая линия. Начинается эта линия из точки, которая характеризует начальную скорость.

Второй – это зависимость при отрицательном значении проекции ускорения, когда движение замедленно, то есть скорость по модулю сначала уменьшается. В этом случае уравнение выглядит так:  

График начинается в точке  и продолжается до точки , пересечения оси времени. В этой точке скорость тела становится равной нулю. Это означает, что тело остановилось.

Если вы внимательно посмотрите на уравнение скорости, то вспомните, что в математике была похожая функция:

Где  и  – некоторые постоянные, например:

Рис. 5. График функции

Это уравнение прямой, что подтверждается графиками, рассмотренными нами.

Чтобы окончательно разобраться с графиком скорости, рассмотрим частные случаи. На первом графике зависимость скорости от времени связана с тем, что начальная скорость, , равняется нулю, проекция ускорения больше нуля.

Запись этого уравнения. А сам вид графика достаточно простой (график 1).

Рис. 6. Различные случаи равноускоренного движения

Еще два случая равноускоренного движения представлены на следующих двух графиках. Второй случай – это ситуация, когда сначала тело двигалось с отрицательной проекцией ускорения, а затем начало разгоняться в положительном направлении оси.

Третий случай – это ситуация, когда проекция ускорения меньше нуля и тело непрерывно движется в направлении, противоположном положительному направлению оси. При этом модуль скорости постоянно возрастает, тело ускоряется.

График зависимости ускорения от времени

Равноускоренное движение – это движение, при котором ускорение тела не меняется.

Рассмотрим графики:

Рис. 7. График зависимости проекций ускорения от времени

Если какая-либо зависимость является постоянной, то на графике она изображается прямой, параллельной оси абсцисс. Прямые I и II – прямые движения для двух разных тел.

Обратите внимание

Обратите внимание, что прямая I лежит выше прямой абсцисс (проекция ускорения положительна), а прямая II – ниже (проекция ускорения отрицательна).

Если бы движение было равномерным, то проекция ускорения совпала бы с осью абсцисс.

Рассмотрим рис. 8. Площадь фигуры, ограниченной осями, графиком и перпендикуляром к оси абсцисс, равна:

Произведение ускорения и времени –это изменение скорости за данное время.

Рис. 8. Изменение скорости

Площадь фигуры, ограниченной осями, зависимостью и перпендикуляром к оси абсцисс, численно равна изменению скорости тела.

Мы использовали слово «численно», поскольку единицы измерения площади и изменения скорости не совпадают.

На данном уроке мы познакомились с уравнением скорости и научились графически изображать данное уравнение.

Список литературы

  1. Кикоин И.К., Кикоин А.К. Физика: Учебник для 9 класса средней школы. – М.: «Просвещение».
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А.В. Перышкин, Е.М. Гутник. – 14-е изд., стереотип. – М.: Дрофа, 2009. – 300 с.
  3. Соколович Ю.А., Богданова Г.С. Физика: Справочник с примерами решения задач. – 2-е издание передел. – X.: Веста: Издательство «Ранок», 2005. – 464 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал «class-fizika.narod.ru» (Источник)
  2. Интернет-портал «youtube.com» (Источник)
  3. Интернет-портал «fizmat.by» (Источник)
  4. Интернет-портал «sverh-zadacha.ucoz.ru» (Источник)

Домашнее задание

1. Что такое равноускоренное движение?

2. Охарактеризуйте движение тела и определите пройденный путь тела по графику за 2 с от начала движения:

3. На каком из графиков изображена зависимость проекции скорости тела от времени при равноускоренном движении при?

Источник: https://interneturok.ru/lesson/physics/9-klass/zakony-vzaimodejstviya-i-dvizheniya-tel/skorost-pryamolineynogo-ravnouskorennogo-dvizheniya-grafik-skorosti

Скорость прямолинейного равноускоренного движения. График скорости

Вспом­ним, что такое уско­ре­ние. Уско­ре­ние – это фи­зи­че­ская ве­ли­чи­на, ко­то­рая ха­рак­те­ри­зу­ет из­ме­не­ние ско­ро­сти за опре­де­лен­ный про­ме­жу­ток вре­ме­ни. ,

то есть уско­ре­ние – это ве­ли­чи­на, ко­то­рая опре­де­ля­ет­ся из­ме­не­ни­ем ско­ро­сти за время, в те­че­нии ко­то­ро­го это из­ме­не­ние про­изо­шло.

 Уравнение скорости

Вос­поль­зо­вав­шись урав­не­ни­ем, опре­де­ля­ю­щим уско­ре­ние, удоб­но за­пи­сать фор­му­лу для вы­чис­ле­ния мгно­вен­ной ско­ро­сти лю­бо­го про­ме­жут­ка и для лю­бо­го мо­мен­та вре­ме­ни: 

Это урав­не­ние даёт воз­мож­ность опре­де­лить ско­рость в любой мо­мент дви­же­ния тела. При ра­бо­те с за­ко­ном из­ме­не­ния ско­ро­сти от вре­ме­ни необ­хо­ди­мо учи­ты­вать на­прав­ле­ние ско­ро­сти по от­но­ше­нию к вы­бран­ной СО.

 График скорости

Гра­фик ско­ро­сти (про­ек­ции ско­ро­сти) пред­став­ля­ет собой закон из­ме­не­ния ско­ро­сти (про­ек­ции ско­ро­сти) от вре­ме­ни для рав­но­уско­рен­но­го пря­мо­ли­ней­но­го дви­же­ния, пред­став­лен­ный гра­фи­че­ски.

Рис. 1. Гра­фи­ки за­ви­си­мо­сти про­ек­ции ско­ро­сти от вре­ме­ни для рав­но­уско­рен­но­го пря­мо­ли­ней­но­го дви­же­ния

Про­ана­ли­зи­ру­ем раз­лич­ные гра­фи­ки.

Пер­вый. Урав­не­ние про­ек­ции ско­ро­сти: . Ско­рость и время уве­ли­чи­ва­ют­ся, об­ра­ти­те вни­ма­ние, что на гра­фи­ке в том месте, где одна из осей – время, а дру­гая – ско­рость, будет пря­мая линия. На­чи­на­ет­ся эта линия из точки , ко­то­рая ха­рак­те­ри­зу­ет на­чаль­ную ско­рость.

Вто­рой – это за­ви­си­мость при от­ри­ца­тель­ном зна­че­нии про­ек­ции уско­ре­ния, когда дви­же­ние за­мед­лен­но, то есть ско­рость по мо­ду­лю сна­ча­ла умень­ша­ет­ся. В этом слу­чае урав­не­ние вы­гля­дит: .

Важно

Гра­фик на­чи­на­ет­ся в точке  про­дол­жа­ет­ся до точки , пе­ре­се­че­ния оси вре­ме­ни. В этой точке ско­рость тела ста­но­вит­ся рав­ной нулю. Это озна­ча­ет, что тело оста­но­ви­лось.

Если вы вни­ма­тель­но по­смот­ри­те на урав­не­ние ско­ро­сти, то вспом­ни­те, что в ма­те­ма­ти­ке была по­хо­жая функ­ция.  Это урав­не­ние пря­мой, что под­твер­жда­ет­ся гра­фи­ка­ми, рас­смот­рен­ны­ми нами.

 Некоторые частные случаи

Чтобы окон­ча­тель­но разо­брать­ся с гра­фи­ком ско­ро­сти рас­смот­рим част­ный слу­чай. На пер­вом гра­фи­ке за­ви­си­мость ско­ро­сти от вре­ме­ни свя­за­на с тем, что на­чаль­ная ско­рость, , рав­ня­ет­ся нулю, про­ек­ция уско­ре­ния боль­ше нуля.

За­пись этого урав­не­ния . Ну и сам вид гра­фи­ка до­ста­точ­но про­стой (гра­фик 1):

Рис. 2. Раз­лич­ные слу­чаи рав­но­уско­рен­но­го дви­же­ния

Еще два слу­чая рав­но­уско­рен­но­го дви­же­ния пред­став­ле­ны на сле­ду­ю­щих двух гра­фи­ках. Вто­рой слу­чай – это си­ту­а­ция, когда сна­ча­ла тело дви­га­лось с от­ри­ца­тель­ной про­ек­ци­ей уско­ре­ния, а затем на­ча­ло раз­го­нять­ся в по­ло­жи­тель­ном на­прав­ле­нии оси ОХ.

Тре­тий слу­чай – это си­ту­а­ция, когда про­ек­ция уско­ре­ния мень­ше нуля и тело непре­рыв­но дви­жет­ся в на­прав­ле­нии, про­ти­во­по­лож­ном по­ло­жи­тель­но­му на­прав­ле­нию оси ОХ. При этом мо­дуль ско­ро­сти по­сто­ян­но воз­рас­та­ет, тело уско­ря­ет­ся.

Источник: https://100ballov.kz/mod/page/view.php?id=2574

Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении

Цели урока:

обучающая: рассмотреть и сформировать навыки построения графиков зависимости кинематических величин от времени при равномерном и равноускоренном движении; научить учащихся анализировать эти графики; путем решения за­дач закрепить полученные знания на практике;

развивающая: развитие умения наблюдать, анализировать конкретные ситуации; выделять определенные признаки;

воспитывающая: воспитание дисциплины и норм поведения, творческого от­ношения к изучаемому предмету; стимулировать активность учащихся.

Методы:

словесный — беседа;

наглядный — видеоурок, записи на доске;

контролирующий — тестирование или устный (письменный) опрос, решение задач).

Связи:

Совет

межпредметные: математика — линейная зависимость, график линейной функции; квадратичная функция и ее график;

внутрипредметные: равномерное и равноускоренное движение.

Ход урока:

1. Организационный этап.

Добрый день. Прежде чем мы приступим к уроку, хотелось бы, чтобы каждый из вас настроился на рабочий лад.

2. Актуализация знаний.

3. Объяснение нового материала.

Скачать этот видеоурок

Мы с вами знаем, что механическое движение — это изменение положения тела (или частей тела) в пространстве относительного других тел с течением времени.

В свою очередь механическое движение бывает двух видов — равномерное, при котором тело за любые равные промежутки времени совершает одинаковые перемещения, и неравномерным, при котором тело за любые равные промежутки времени совершает разные перемещения.

Давайте вспомним основные формулы, которые мы выучили для равномерного и неравномерного движения.

Если движение равномерное, то:

1. Скорость тела не меняется с течением времени;

2. Что бы найти скорость тела, необходимо путь, который прошло тело за некоторый промежуток времени, разделить на этот промежуток времени;

3. Уравнение перемещения имеет вид:

4. И — кинематическое уравнение равномерного движения.

Для равноускоренного:

1. Ускорение тела не изменяется с течением времени;

2. Ускорение есть величина, равная отношению изменения скорости тела, к промежутку времени, в течении которого это изменение произошло

3. Уравнение скорости для равноускоренного движения имеет вид:

4. — уравнение перемещения для равноускоренного движения;

5.— кинематическое уравнение равноускоренного движения.

Для большей наглядности движение можно описывать с помощью графиков.

Рассмотрим зависимость ускорения, которым может обладать тело вследствие своего движения, от времени.

Обратите внимание

Если по горизонтальной оси (оси абсцисс) откладывать в определенном масштабе время, прошедшее с начала отсчета времени, а по вертикальной оси (оси ординат) — тоже в соответствующем масштабе — значения ускорения тела, полученный график будет выражать зависимость ускорения тела от времени.

Для равномерного прямолинейного движения график зависимости ускорения от времени имеет вид прямой, которая совпадает с осью времени, т.к. ускорение при равномерном движении равно нулю.

Для равноускоренного движения график ускорения также имеет вид прямой, параллельной оси времени. При этом график располагается над осью времени, если тело движется ускоренно, и под осью времени, если тело движется замедленно.

Если по горизонтальной оси (оси абсцисс) откладывать в определенном масштабе время, а по вертикальной оси ординат — тоже в соответствующем масштабе — значения скорости тела, то мы получим график скорости.

Для равномерного движения график скорости имеет вид прямой, параллельной оси времени. При этом график скорости располагается над осью времени, если тело движется по оси Х, и под осью времени, если тело движется против оси Х.

Такие графики показывают, как изменяется скорость с течением времени, т. е. как скорость зависит от времени. В случае прямолинейного равномерного движения эта «зависимость» состоит в том, что скорость с течением времени не меняется. Поэтому график скорости представляет собой прямую, параллельную оси времени.

По графику скорости тоже можно узнать абсолютное значение перемещения тела за данный промежуток времени. Оно численно равно площади заштрихованного прямоугольника: верхнего, если тело движется в сторону положительного направления, и нижнего — в случае движения тела в отрицательном направлении.

Действительно, площадь прямоугольника равна произведению его сторон: S=ab, где a и b стороны прямоугольника.

Важно

Но одна из сторон в определенном масштабе равна времени, а другая — скорости. А их произведение как раз и равно абсолютному значению перемещения тела. При этом перемещение будет положительным, если проекция вектора скорости положительна, и отрицательным, если проекция вектора скорости отрицательна.

При равноускоренном движении тела, происходящем вдоль координатной оси X, скорость с течением времени не остается постоянной, а меняется со временем согласно формуле v = v0 + at, т. е. скорость является линейной функцией, и поэтому графики скорости имеют вид прямой, наклоненную к оси времени.

Читайте также:  Рынок b2c: что это, примеры бизнеса и техники продаж

Причем, чем больше угол наклона, те большую скорость имеет тело. На нашем графике прямая 1 соответствует движению с положительным ускорением (скорость увеличивается) и некоторой начальной скоростью, прямая 2 — движению с отрицательным ускорением (скорость убывает) и начальной скоростью равной нулю.

По графику скорости при равноускоренном движении также можно узнать абсолютное значение перемещения тела за данный промежуток времени.

Оно численно равно площади заштрихованной трапеции для тела 1, и прямоугольного треугольника — в противоположном случае. Действительно, например, площадь трапеции равна произведению полу суммы её оснований на высоту.

В нашем случае, в определенном масштабе, высота трапеции равна времени, а основания — начальной и конечной скорости.

При этом проекция перемещения для первого тела будет положительной.

Для второго тела, прямоугольного треугольника — половине произведения его катетов. В нашем случае, катеты — это время и конечная скорость тела.

Проекция перемещения — отрицательна.

Теперь рассмотрим зависимость пройденного пути от времени.

Как и в предыдущих случаях, по оси абсцисс мы будем откладывать время, с момента начала движения, а по оси ординат — путь.

Совет

Для равномерного движения график зависимости пути от времени представляет собой прямую линию, т.к. зависимость — линейная.

При этом наклон графика к оси времени зависит от модуля скорости: чем больше скорость, тем больший угол наклона и тем больше скорость движения тела.

При равноускоренном движении графиком будет являться ветка параболы, т.к. зависимость, в этом случае, будет квадратичной. И чем больше ускорение, с которым движется тело, тем сильнее график будет прижиматься к оси ординат.

Теперь перейдем к рассмотрению зависимости перемещения от времени.

Рассмотрим равномерное движение.

Т.к. при равномерном движении перемещение линейно зависит от времени (sx = υxt), то графиком будет являться прямая линия. Направление и угол наклона графика к оси времени будет зависеть от проекции вектора скорости на координатную ось.

Так, в нашем случае, тела 2 и 3 движутся в положительном направлении оси Х, при этом скорость третьего тела больше скорости второго.

А тело 1 — в направлении, противоположном направлению оси Х, поэтому график располагается под осью времени.

Для равноускоренного движения графиком перемещения является парабола, положение вершины которой зависит от направлений начальной скорости и ускорения.

Для 1-го тела ускорение меньше нуля, начальная скорость равна нулю.

Для 2-го тела ускорение и начальная скорость тела больше нуля.

Для 3-го тела ускорение больше нуля, начальная скорость меньше нуля.

У 4-го тела начальная скорость и ускорение меньше нуля.

Для 5-го тела ускорение больше нуля, а начальная скорость равна нулю.

И, наконец, 6-ое тело двигается замедленно, но с некоторой начальной скоростью.

И последнее, что мы с вами рассмотрим — это зависимость координаты тела от времени.

Обратите внимание

Если по горизонтальной оси (оси абсцисс) откладывать в определенном масштабе время, прошедшее с начала отсчета времени, а по вертикальной оси (оси ординат) — тоже в соответствующем масштабе — значения координаты тела, полученный график будет выражать зависимость координаты тела от времени (его также называют графиком движения).

Для равноускоренного движения графиком движения, как и в случае перемещения, является парабола, положение вершины которой также зависит от направлений начальной скорости и ускорения.

График равномерного движения представляет собой прямую линию. Это значит, что координата линейно зависит от времени.

В случае прямолинейного движения тела графики дви­жения дают полное решение за­дачи механики, так как они позволяют найти поло­жение тела в любой момент времени, в том числе и в моменты времени, предшество­вавшие начальному моменту (если предполо­жить, что тело двигалось с такой же ско­ростью и до начала отсчета времени).

С помощью графика движения можно определить:

1. координаты тела в любой момент времени;

2. путь, пройденный телом за некоторый промежуток времени;

3. время, за которое пройден какой-то путь;

4. кратчайшее расстояние м/у телами в любой момент времени;

5. момент и место встречи и т. д.

По виду графиков зависи­мости координаты от времени можно судить и о скорости дви­жения. Ясно, что скорость тем больше, чем круче график, т. е. чем больше угол между ним и осью времени (чем больше этот угол, тем больше изме­нение координаты за одно и то же время).

При этом надо помнить, что график зависимости координаты тела от времени не следует путать с траекторией движения тела — прямой, во всех точках которой тело побывало при своем движении.

4. Этап обобщения и закрепления нового материала

И так, сделаем главный вывод.

Механическое движение для большей наглядности можно описывать с помощью графиков:

1) Зависимости скорости от времени;

2) Зависимости ускорения от времени;

3) Зависимость координаты тела от времени;

4) И зависимости перемещения тела от времени, в течении которого это перемещение произошло.

5. Рефлексия

Хотелось бы услышать ваши отзывы о сегодняшнем уроке: что вам понравилось, что не понравилось, чем бы хотелось узнать еще.

6. Домашнее задание.

Источник: https://videouroki.net/blog/grafiki-zavisimosti-kinematicheskikh-velichin-ot-vremeni-pri-ravnomernom-i-ravnouskorennom-dvizhenii.html

Самая удобная и увлекательная подготовка к ЕГЭ

Часть механики, в которой изучают движение, не рассматривая причины, вызывающие тот или иной характер движения, называют кинематикой.
Механическим движением называют изменение положения тела относительно других тел
Системой отсчёта называют тело отсчёта, связанную с ним систему координат и часы.

Телом отсчёта называют тело, относительно которого рассматривают положение других тел.
Материальной точкой называют тело, размерами которого в данной задаче можно пренебречь.
Траекторией называют мысленную линию, которую при своём движении описывает материальная точка.

По форме траектории движение делится на:

а) прямолинейное — траектория представляет собой отрезок прямой;

б) криволинейное — траектория представляет собой отрезок кривой.Путь — это длина траектории, которую описывает материальная точка за данный промежуток времени. Это скалярная величина.
Перемещение — это вектор, соединяющий начальное положение материальной точки с её конечным положением (см. рис.).

Очень важно понимать, чем путь отличается от перемещения. Самое главной отличие в том, что перемещение — это вектор с началом в точке отправления и с концом в точке назначения (при этом абсолютно неважно, каким маршрутом это перемещение совершалось). А путь — это, наборот, скалярная величина, отражающая длину пройденной траектории.

Равномерным прямолинейным движением называют движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещения
Скоростью равномерного прямолинейного движения называют отношение перемещения ко времени, за которое это перемещение произошло:

Для неравномерного движения пользуются понятием средней скорости. Часто вводят среднюю скорость как скалярную величину. Это скорость такого равномерного движения, при котором тело проходит тот же путь за то же время, что и при неравномерном движении:

Мгновенной скоростью называют скорость тела в данной точке траектории или в данный момент времени.

Равноускоренное прямолинейное движение — это прямолинейное движение, при котором мгновенная скорость за любые равные промежутки времени изменяется на одну и ту же величину
Ускорением называют отношение изменения мгновенной скорости тела ко времени, за которое это изменение произошло:

Зависимость координаты тела от времени в равномерном прямолинейном движении имеет вид: x = x0 + Vxt, где x0 — начальная координата тела, Vx — скорость движения.
Свободным падением называют равноускоренное движение с постоянным ускорением g = 9,8 м/с2, не зависящим от массы падающего тела. Оно происходит только под действием силы тяжести.

Важно

Скорость при свободном падении рассчитывается по формуле:
Перемещение по вертикали рассчитывается по формуле:

Одним из видов движения материальной точки является движение по окружности. При таком движении скорость тела направлена по касательной, проведённой к окружности в той точке, где находится тело (линейная скорость). Описывать положение тела на окружности можно с помощью радиуса, проведённого из центра окружности к телу.

Перемещение тела при движении по окружности описывается поворотом радиуса окружности, соединяющего центр окружности с телом.

Отношение угла поворота радиуса к промежутку времени, в течение которого этот поворот произошёл, характеризует быстроту перемещения тела по окружности и носит название угловой скорости ω:
Угловая скорость связана с линейной скоростью соотношением

где r — радиус окружности.

Время, за которое тело описывает полный оборот, называется периодом обращения. Величина, обратная периоду — частота обращения — ν

Поскольку при равномерном движении по окружности модуль скорости не меняется, но меняется направление скорости, при таком движении существует ускорение. Его называют центростремительным ускорением, оно направлено по радиусу к центру окружности:

Основные понятия и законы динамики

Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой

Первый закон Ньютона: Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано.

Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется инертностью. Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией. Инерциальными системами отсчёта называют системы, в которых выполняется первый закон Ньютона.

Принцип относительности Галилея:во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законам

Масса — это мера инертности тела

Сила — это количественная мера взаимодействия тел.Второй закон Ньютона:Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой:

$F↖{→} = m⋅a↖{→}$

Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.

Третий закон Ньютона: Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению:

$F_1↖{→} = -F_2↖{→} $

Совет

III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело A (см. рис.).

Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом — Землёй.

Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места.

Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации.

Такие силы называют силами упругости.

Закон Гука записывают в виде

где k — жёсткость пружины, x — деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.

При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения. Различают трение покоя и трение скольжения. Сила трения скольжения подсчитывается по формуле
где N — сила реакции опоры, µ — коэффициент трения.

Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.

Трение покоя возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значения

Гравитационными силами называют силы, с которыми любые два тела притягиваются друг к другу.

Закон всемирного тяготения: любые два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.Здесь R — расстояние между телами. Закон всемирного тяготения в таком виде справедлив либо для материальных точек, либо для тел шарообразной формы.

Весом тела называют силу, с которой тело давит на горизонтальную опору или растягивает подвес.

Сила тяжести — это сила, с которой все тела притягиваются к Земле:

При неподвижной опоре вес тела равен по модулю силе тяжести:Если тело движется по вертикали с ускорением, то его вес будет изменяться. При движении тела с ускорением, направленным вверх, его весВидно, что вес тела больше веса покоящегося тела. При движении тела с ускорением, направленным вниз, его весВ этом случае вес тела меньше веса покоящегося тела.

Невесомостью называется такое движение тела, при котором его ускорение равно ускорению свободного падения, т.е. a = g. Это возможно в том случае, если на тело действует только одна сила — сила тяжести.

Читайте также:  Толковые советы по оформлению курсовой работы

Искусственный спутник Земли — это тело, имеющее скорость V1, достаточную для того, чтобы двигаться по окружности вокруг Земли На спутник Земли действует только одна сила — сила тяжести, направленная к центру Земли

Первая космическая скорость — это скорость, которую надо сообщить телу, чтобы оно обращалось вокруг планеты по круговой орбите.

где R — расстояние от центра планеты до спутника. Для Земли, вблизи её поверхности, первая космическая скорость равнаТело (материальная точка) находится в состоянии равновесия, если векторная сумма сил, действующих на него, равна нулю. Различают 3 вида равновесия: устойчивое, неустойчивое и безразличное. Если при выведении тела из положения равновесия возникают силы, стремящиеся вернуть это тело обратно, это устойчивое равновесие. Если возникают силы, стремящиеся увести тело ещё дальше из положения равновесия, это неустойчивое положение; если никаких сил не возникает — безразличное (см. рис. 3).
Когда речь идёт не о материальной точке, а о теле, которое может иметь ось вращения, то для достижения положения равновесия помимо равенства нулю суммы сил, действующих на тело, необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, была равна нулю.
Здесь d —плечо силы. Плечом силы d называют расстояние от оси вращения до линии действия силы.

Условие равновесия рычага:

алгебраическая сумма моментов всех вращающих тело сил равна нулю.

Давлением называют физическую величину, равную отношению силы, действующей на площадку, перпендикулярную этой силе, к площади площадки:

Для жидкостей и газов справедлив закон Паскаля:

давление распространяется по всем направлениям без изменений. Если жидкость или газ находятся в поле силы тяжести, то каждый вышерасположенный слой давит на нижерасположенные и по мере погружения внутрь жидкости или газа давление растёт.

Для жидкостейгде ρ — плотность жидкости, h — глубина проникновения в жидкость. Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. Если в колена сообщающихся сосудов залить жидкость с разными плотностями, то жидкость с большей плотностью устанавливается на меньшей высоте.

В этом случаеВысоты столбов жидкости обратно пропорциональны плотностям:

Гидравлический пресс представляет собой сосуд, заполненный маслом или иной жидкостью, в котором прорезаны два отверстия, закрытые поршнями. Поршни имеют разную площадь.

Если к одному поршню приложить некоторую силу, то сила, приложенная ко второму поршню, оказывается другой.

Обратите внимание

Таким образом, гидравлический пресс служит для преобразования величины силы. Поскольку давление под поршнями должно быть одинаковым, то

Тогда A1 = A2.

На тело, погружённое в жидкость или газ, со стороны этой жидкости или газа действует направленная вверх выталкивающая сила, которую называют силой Архимеда
Величину выталкивающей силы устанавливает закон Архимеда: на тело, погружённое в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненного телом:

где ρжидк — плотность жидкости, в которую погружено тело; Vпогр — объём погружённой части тела.

Условие плавания тела — тело плавает в жидкости или газе, когда выталкивающая сила,действующая на тело, равна силе тяжести, действующей на тело.

Импульсом тела называют физическую величину, равную произведению массы тела на его скорость:

Импульс — векторная величина. [p] =кг·м/с. Наряду с импульсом тела часто пользуются импульсом силы. Это произведение силы на время её действия

Изменение импульса тела равно импульсу действующей на это тело силы. Для изолированной системы тел (система, тела которой взаимодействуют только друг с другом) выполняется закон сохранения импульса: сумма импульсов тел изолированной системы до взаимодействия равна сумме импульсов этих же тел после взаимодействия.
Механической работой называют физическую величину, которая равна произведению силы, действующей на тело, на перемещение тела и на косинус угла между направлением силы и перемещения:

Мощность — это работа, совершённая в единицу времени:

Способность тела совершать работу характеризуют величиной, которую называют энергией. Механическую энергию делят на кинетическую и потенциальную. Если тело может совершать работу за счёт своего движения, говорят, что оно обладает кинетической энергией. Кинетическая энергия поступательного движения материальной точки подсчитывается по формуле

Если тело может совершать работу за счёт изменения своего положения относительно других тел или за счёт изменения положения частей тела, оно обладает потенциальной энергией. Пример потенциальной энергии: тело, поднятое над землёй, его энергия подсчитывается по формуле
где h — высота подъёма

Энергия сжатой пружины:

где k — коэффициент жёсткости пружины, x — абсолютная деформация пружины.

Сумма потенциальной и кинетической энергии составляет механическую энергию.

Для изолированной системы тел в механике справедлив закон сохранения механической энергии: если между телами изолированной системы не действуют силы трения (или другие силы, приводящие к рассеянию энергии), то сумма механических энергий тел этой системы не изменяется (закон сохранения энергии в механике). Если же силы трения между телами изолированной системы есть, то при взаимодействии часть механической энергии тел переходит во внутреннюю энергию.

Колебаниями называются движения, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.
Гармоническими колебаниями называются такие колебания, в которых колеблющаяся физическая величина x изменяется по закону синуса или косинуса, т.е.

Величина A, равная наибольшему абсолютному значению колеблющейся физической величины x, называется амплитудой колебаний.

Выражение α = ωt + ϕ определяет значение x в данный момент времени и называется фазой колебаний. Периодом T называется время, за которое колеблющееся тело совершает одно полное колебание.

Частотой периодических колебаний называют число полных колебаний, совершённых за единицу времени:

Частота измеряется в с-1. Эта единица называется герц (Гц).

Математическим маятником называется материальная точка массой m, подвешенная на невесомой нерастяжимой нити и совершающая колебания в вертикальной плоскости.

Если один конец пружины закрепить неподвижно, а к другому её концу прикрепить некоторое тело массой m, то при выведении тела из положения равновесия пружина растянется и возникнут колебания тела на пружине в горизонтальной или вертикальной плоскости. Такой маятник называется пружинным.

Период колебаний математического маятника определяется по формуле

где l — длина маятника.

Период колебаний груза на пружине определяется по формуле

где k — жёсткость пружины, m — масса груза.

Распространение колебаний в упругих средах.

Среда называется упругой, если между её частицами существуют силы взаимодействия. Волнами называется процесс распространения колебаний в упругих средах.

Волна называется поперечной, если частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны.

Волна называется продольной, если колебания частиц среды происходят в направлении распространения волны.

Длиной волны называется расстояние между двумя ближайшими точками, колеблющимися в одинаковой фазе:
где v — скорость распространения волны.

Звуковыми волнами называют волны, колебания в которых происходят с частотами от 20 до 20 000 Гц.

Скорость звука различна в различных средах. Скорость звука в воздухе равна 340 м/c.

Ультразвуковыми волнами называют волны, частота колебаний в которых превышает 20 000 Гц. Ультразвуковые волны не воспринимаются человеческим ухом.

Источник: https://examer.ru/ege_po_fizike/teoriya/skorost

Графики равномерного и равноускоренного движения. — презентация

1 Графики равномерного и равноускоренного движения<\p>

2 Цели урока: Образовательные: проверить усвоение учащимися физических понятий (траектория, путь, перемещение, скорость, ускорение); выявить уровень сформированности знания о видах движения; выявить умение описывать вид движения, вычленяя основные признаки; выявить уровень сформированности умения решать типовые задачи на узнавание вида движения, графическое изображение; выявить умение использовать справочную литературу. Воспитательные: приучать учащихся к аккуратной записи: а) при решении задач в тетради; б) при оформлении классной доски; в) при построении графиков; приучать учащихся к доброжелательному отношению, взаимопомощи, взаимопроверке, к самооценке. Развивающие: продолжать формирование умения анализировать условия задач; обобщать изучаемый материал при решении задач на различные виды движения; анализировать и оценивать ответ одноклассников; продолжать развивать монологическую речь к использов<\p>

3 единицы измерения: пути; скорости; координаты; ускорения;<\p>

4 формулы: равномерного движения: v = s/t; s = vt; x = х о + vt; а = 0; равноускоренного движения: v = v о + at; a = (v – v о )/t; s = v о t + at 2 /2; x = х о + v о t + at 2 /2.<\p>

5 графики равномерного движения (движения, скорости, ускорения); графики равноускоренного движения (движения, скорости, ускорения);<\p>

Важно

6 вопросы 1. Способы представления. 2. Что такое график? 3. График и график функции – это равнозначные понятия? Какое является более общим? 4. К чему относятся диаграммы? 5. З ачем нужны графики? Как вы представляете параболу? Ф ормулой? Л инией? Значениями?<\p>

7 ответы 1. Способы представления функции(словесный, аналитический – формулой, табличный, графический). 2. Что такое график? (graphikos – начертательный(греч), чертёж наглядно что-то изображающий, это линия, построенная определённым образом в определённой системе координат). 3. График и график функции – это равнозначные понятия? Какое является более общим? (График функции – это линия, дающая цельное представление о характере изменения функции по мере изменения аргумента, каждому значению х соответствует одно и только одно значение y.) 4. К чему относятся диаграммы? (Диаграммы – к графикам, например, диаграмма состояния, диаграмма растяжения материала.) 5. Зачем нужны графики? Как вы представляете параболу? Формулой? Линией? Значениями? (Наглядность, информативность, график-это своеобразная фотография функции.)<\p>

8 вопросы 6. Какие требования мы предъявляем к графику? Что входит в понятие графика? 7. Всегда ли вы встречаете числовые значения? 8. Какие графики встречаются в физике? 9. Может ли график иметь сразу несколько названий? 10. Как графики используется в физике?<\p>

9 ответы 6. Какие требования мы предъявляем к графику? Что входит в понятие графика? (Оси координат, их обозначение, единицы измерения, масштаб, точки, название.) 7. Всегда ли вы встречаете числовые значения? (График без числовых значений называется эскизным.) 8. Какие графики встречаются в физике? (Графики движения, скорости, ускорения) 9. Может ли график иметь сразу несколько названий? (Изотерма, гипербола, график изотермического сжатия.) 10. Как графики используется в физике? (Результаты эксперимента, сравнение теории и практики, чтение, определение величин заданных явно и неявно, решение задач.)<\p>

10 Задача 1 От движущегося поезда отцепляют последний вагон. Поезд продолжает двигаться с той же скоростью. Сравните пути, пройденные поездом и вагоном к моменту остановки вагона. Ускорение вагона можно считать постоянным. Аналитическое решение. t – время движения; v – скорость поезда; v – начальная скорость вагона. Для поезда путь равен S = v · t (1) Для вагона, который движется равнозамедленно S = v · t – аt 2 /2, где a =-v/t S = = v · t/2 Графическое решение<\p>

11 Задача 2 Движение двух велосипедистов описывается уравнениями x 1 = 12t и x 2 = 120 – 10t. Опишите характер движения каждого велосипедиста, найдите модуль и направление их скоростей, определите место и время встречи этих велосипедистов.<\p>

12 Задача 2 1. Равноускоренному движению соответствует график зависимости модуля ускорения от времени, обозначенный на рисунке буквой 1) А; 2) Б; 3) В; 4) Г.<\p>

13 3. На рисунке представлена зависимость координаты центра шара, подвешенного на пружине, от времени. Период колебаний равен: 1) 2 с; 2) 4 с; 3) 6 с; 4) 10 с.<\p>

14 Задача 4 написать уравнение х(t).<\p>

Совет

15 Задача 5 Уравнение координаты тела имеет вид х = t + t 2, величины измерены в единицах С И: А) опишите характер движения тела; Б) найдите начальную координату, модуль и направление начальной скорости, модуль и направление ускорения; В) напишите уравнение v ( t), постройте график скорости; Г) постройте график х(t).<\p>

Источник: http://www.myshared.ru/slide/1164352/

Ссылка на основную публикацию
Adblock
detector